Controlled plasmonic nanostructures for surface-enhanced spectroscopy and sensing.
نویسندگان
چکیده
After its discovery more than 30 years ago, surface-enhanced Raman spectroscopy (SERS) was expected to have major impact as a sensitive analytical technique and tool for fundamental studies of surface species. Unfortunately, the lack of reliable and reproducible fabrication methods limited its applicability. In recent years, SERS has enjoyed a renaissance, and there is renewed interest in both the fundamentals and applications of SERS. New techniques for nanofabrication, the design of substrates that maximize the electromagnetic enhancement, and the discovery of single-molecule SERS are driving the resurgence of this field. This Account highlights our group's recent work on SERS. Initially, we discuss SERS substrates that have shown proven reproducibility, stability, and large field enhancement. These substrates enable many analytical applications, such as anthrax detection, chemical warfare agent stimulant detection, and in vitro and in vivo glucose sensing. We then turn to a detailed study of the wavelength and distance dependence of SERS, which further illustrate predictions obtained from the electromagnetic enhancement mechanism. Last, an isotopic labeling technique applied to the rhodamine 6G (R6G)/silver system serves as an additional proof of the existence of single-molecule SERS and explores the dynamical features of this process. This work, in conjunction with theoretical calculations, allows us to comment on the possible role of charge transfer in the R6G/silver system.
منابع مشابه
A new generation of sensors based on extraordinary optical transmission.
[Reaction: see text]. Plasmonic-based chemical sensing technologies play a key role in chemical, biochemical, and biomedical research, but basic research in this area is still attracting interest. Researchers would like to develop new types of plasmonic nanostructures that can improve the analytical figures of merit, such as detection limits, sensitivity, selectivity, and dynamic range, relativ...
متن کاملLarge-area Low-cost Fabrication of Complex Plasmonic Nanostructures for Sensing Applications
In this thesis, we introduce hole-mask colloidal lithography and nanosphere lithography techniques for low-cost nanofabrication of large-area (about 1 cm) plasmonic nanostructures with different complex shapes. For the first one, we use thin film PMMA-gold hole-masks, which are first prepared with polystyrene colloids, combined with following tilted-angle-rotation evaporation to fabricate large...
متن کاملPlasmonic nanostructures for unifying surface enhanced Raman and Infrared Absorption spectroscopy by Janardan Kundu
Plasmonic nanostructures for unifying surface enhanced Raman and Infrared Absorption spectroscopy
متن کاملFabrication and Characterization of Flexible and Tunable Plasmonic Nanostructures
We present a novel method to fabricate flexible and tunable plasmonic nanostructures based on combination of soft lithography and nanosphere lithography, and perform a comprehensive structural and optical characterization of these structures. Spherical latex particles are uniformly deposited on glass slides and used as molds for polydimethylsiloxane to obtain nanovoid structures. The diameter a...
متن کاملFabrication and Characterization of Plasmonic Nanopores with Cavities in the Solid Support
Plasmonic nanostructures are widely used for various sensing applications by monitoring changes in refractive index through optical spectroscopy or as substrates for surface enhanced Raman spectroscopy. However, in most practical situations conventional surface plasmon resonance is preferred for biomolecular interaction analysis because of its high resolution in surface coverage and the simple ...
متن کاملControlled positioning of analytes and cells on a plasmonic platform for glycan sensing using surface enhanced Raman spectroscopy.
The rise of molecular plasmonics and its application to ultrasensitive spectroscopic measurements has been enabled by the rational design and fabrication of a variety of metallic nanostructures. Advanced nano and microfabrication methods are key to the development of such structures, allowing one to tailor optical fields at the sub-wavelength scale, thereby optimizing excitation conditions for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Accounts of chemical research
دوره 41 12 شماره
صفحات -
تاریخ انتشار 2008